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ABSTRACT

Statistical analysis of longitudinal data is a significant prob-
lem in Biomedical imaging applications. In the recent past,
several researchers have developed mathematically rigorous
methods based on differential geometry and statistics to tackle
the problem of statistical analysis of longitudinal neuroimag-
ing data. In this paper, we present a novel formulation of the
longitudinal data analysis problem by identifying the struc-
tural changes over time (describing the trajectory of change)
to a product Riemannian manifold endowed with a Rieman-
nian metric and a probability measure. We present theoreti-
cal results showing that the maximum likelihood estimate of
the mean and median of a Gaussian and Laplace distribution
respectively on the product manifold yield the Fréchet mean
and median respectively. We then present efficient recursive
estimators for these intrinsic parameters and use them in con-
junction with a nearest neighbor (NN) classifier to classify
MR brain scans (acquired from the publicly available OASIS
database) of patients with and without dementia.

Index Terms— Longitudinal studies, Trajectories, Mani-
folds.

1. INTRODUCTION

In this paper, we present a novel method to compute statis-
tics on the space of manifold-valued trajectories. We will first
give the space of trajectories a Riemannian manifold struc-
ture. It is very common in medical imaging applications to
have data lie on a path residing on a Riemannian manifold,
specifically longitudinal or time-series data. For example, it
is often possible to identify patients with dementia by taking
multiple magnetic resonance (MR) scans of the brain over
time, assessing and comparing the structural changes from
the norm in the corpus callosum. In this work, we have used
the publicly available OASIS data [1], where each patient has
multiple brain MR scans from different visits over time. For
each patient, we track the changes in their corpus callosum
and map them on to the space of trajectories. Then, we iden-
tify the space of trajectories with a product space of two well-
studied Riemannian manifolds and perform clustering on this
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product space. Further, we also present a intrinsic mean and
median computation techniques on this space of trajectories.
The salient features of
our proposed method are
(1) Both the mean and
median computation al-
gorithms are recursive
and efficient. (2) We can
recover the mean trajec-
tory or the “trajectory at-
las” since our identifica-
tion of trajectory on the
product manifold is a bijection. (3) Our proposed mean and
median estimators are recursive, hence, in an online stream-
ing of trajectory data, our method can compute the mean and
median very effectively without storing the whole data. In the
“toy” example of Figure (1), we show two trajectories on the
sphere, S2, (shown in blue) and the mean of these two trajec-
tories is shown in red. It is evident that the mean trajectory
goes through the “midpoint” of the two trajectories. Thus,
our goal for the rest of the paper is to define the space of tra-
jectories and identify it with a known Riemannian manifold.
Then, we generalize two well-known distributions, namely
the Gaussian and the Laplace to this space. Since our iden-
tification maps the space of trajectories to a product of two
homogeneous spaces, in order to define a distribution on the
product space, we first generalize the two well-known distri-
butions to a homogeneous space. Then, we sample from these
distribution and state (proof not included due to space limita-
tions) that the maximum likelihood estimator (MLE) of the
location parameter of Gaussian distribution yields the Fréchet
mean (FM) [2] of the samples, while the MLE of the loca-
tion parameter of Laplace distribution yields the Fréchet me-
dian (FMe) [2] of the samples. Equipped with the tools to
define distributions on the space of trajectories, we propose
an efficient recursive estimator to compute FM and FMe on
this space. Moreover, we claim that our proposed estimator
is (weakly) consistent. Due to space limitations, we simply
state the theorems without proof and will include them in a
future publication. We use publicly available OASIS data [1]
to perform classification of patients with and without demen-
tia using the FM on the space of trajectories in conjunction
with a nearest-neighbor (NN) classifier. Further, when the

Fig. 1: Toy example
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data are corrupted with outliers, we replace the FM with FMe
the above classifier. Comparisons are presented between the
proposed FM and FMe-based classification to depict the ro-
bustness of the FMe based scheme in the presence of outliers.
Before we discuss our framework to compute statistics on the
space of trajectories, we will briefly discuss some of the re-
cent related work.

In [3], the authors proposed a framework to compute “tra-
jectory atlas” and registration of trajectories. They modeled
each trajectory as a smooth curve on a Riemannian manifold.
The method to compute the “trajectory atlas” involves an opti-
mization problem, hence is not as computationally efficient as
our proposed method, which does not involve any optimiza-
tion. In [4], authors equipped the tangent bundle with a Sasaki
metric and identify the longitudinal data as a point on the tan-
gent bundle. In [5], authors performed a principal geodesic
analysis (PGA) on the tangent bundle to achieve PGA of the
longitudinal dataset. In [6], authors performed the segmenta-
tion of motion characterized by trajectories on a Riemannian
manifold.

2. STATISTICS ON THE SPACE OF TRAJECTORIES

In this section, we will first briefly discuss the geometry of
two homogeneous spaces, namely Stiefel and SPD(n) (space
of n X n symmetric positive-definite matrices). These two
spaces will be needed later in our geometric formulation of
the space of trajectories. Thus, in the following paragraphs,
we present a “bare bones” background differential geome-
try material needed to present our formulation and refer the
reader to [7] for more details.

Let (M, g) be a Riemannian manifold with a Riemannian
metric g. Let d be the metric induced by the Riemannian
metric g. Let G be the set of all isometries of M, i.e., given
g € G,d(g.X,9.Y) = d(X,Y), forall X,Y € M. Let
O € M and let H = Stab(O) = {h € G|h.O = O}. We say
G acts transitively on M, iff given X, Y € M, there exists
g € M suchthatY = g.X.

Definition 2.1. Let M be a Riemannian manifold. Let G =
I(M) acts transitively on M and H = Stab(O), O € M
(called the “origin” of M) is a normal subgroup of G. Then,
M is a homogeneous space and can be identified with the
quotient space G | H under the diffeomorphic mapping gH +—
9.0,9€ G[7].

A compact Stiefel manifold, St(p,n), is the set of all
(n x p) dimensional column orthonormal real matrices, where
n > p. St(p,n) is a homogeneous space and can be identi-
fied with SO(n)/SO(n — p), SO(n) is the group of special
orthogonal matrices. Given X € St(p,n), we can define an
efficient Cayley type Riemannian retraction and lifting map
within an open neighborhood of X as defined in [8]. SPD(n)
is the space of n X n symmetric positive definite matrices.
SPD(n) is a homogeneous space and can be identified with

GL(n)/O(n), O(n) is the group of orthogonal matrices. For
the Exponential and Inverse Exponential maps on SPD(n),
we refer the readers to [9].

From the definition of a homogeneous space, we know that
the Riemannian metric g at X is invariant under the group
operation X — ¢.X, hence the volume element dv is also
preserved.

Proposition 2.1. Let F': M — R be an integrable function.
Then, [ F(g9.X)dv(g.X) = [ F(X)dv(X).

Gaussian and Laplace distribution: Now, we will de-
fine the Gaussian and Laplace distributions on a homoge-
neous space with the following density functions with respect
to dv as follows, here o, b > 0. These distributions will be re-
quired subsequently in the statement of the theorem on maxi-
mum likelihood estimation.

2
(Gaussian) fx (M,o0) = exp(—%)/Z(a) (1)
(Laplace) £x (11,5) = exp(~ "My 7))

Theorem 2.1. The normalizing constants in Egs. (1, 2), i.e.,
Z(M,p) = [ fx (M,0)dv(X)and Z(M,b) = [ fx (M,b)
dv(X) are constants and independent of M, i.e., the functions
in Egs. (1, 2) are valid probability densities.

Due to limited space, we will provide the proof of this
theorem in a subsequent journal version of this paper. Given
a set of N samples, {X;}}¥ ,, the Fréchet mean (FM) [2], M
is defined as M* = arg miny Zfil d*(X;,Y). The Fréchet
median (FMe) [2] on a set of N samples, { X;}¥ |, is defined
as M = arg miny Zi\il d(X;,Y). For the rest of the paper,
we will assume that the samples lie within a regular geodesic
ball of appropriate radius so that both FM and FMe exist and
are unique [10].

Theorem 2.2. (a) Given aset ofi.i.d samples {X;}Y.| € M
drawn from the Gaussian distribution on M, the maxi-
mum likelihood estimate (MLE) of M is the Fréchet mean
(FM) of all the samples.

(b) Given a set of i.i.d samples {X;}N | drawn from the
Laplace distribution, the MLE of M is the Fréchet me-
dian (FMe) of all the samples.

Proof of this theorem will be included in a subsequent
journal version of this paper. We will now give an efficient
recursive FM and FMe estimator, M} (we denote both FM
and FMe by M, with a slight abuse of notation) on St(p,n)
and SPD(n).

M, = X4, My, = Expyy, | (vr/k)  (3)

where, v, = Epr_/[Ll(Xk) for FM and for FMe, v, =
Expﬁk_l(Xk)/d(Mk,l,Xk). Here {X;} C St(p,n) or
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{X;} C SPD(n). The proof of consistency of this FM es-
timator on St(p,n) will be given in the companion journal
version. The proof of consistency of FM estimator on SPD(n)
is given in [9]. We refer the readers to [11] for the proof of
consistency of FMe estimator on any Riemannian manifold.

The Space of trajectories and its geometry: We define
a trajectory, y to be a path (consists of a discrete set of points)
on a Riemannian manifold M. For the rest of this section, we
will identify the space of trajectories on a Riemannian man-
ifold, denoted by T (M), with a Riemannian manifold and
define statistics on T(M) using the theory discussed above.

Definition 2.2. Given that a trajectory, «, consists of a
set of p points, on a Riemannian manifold M, identify «
with a matrix, A, of dimension n X p, where n is the di-
mension of the ambient space (isomorphic to R™) of M.
Without any loss of generality, we assume that n > p and
moreover, each point on the path, i.e., each column of A,
are i.i.d. samples drawn from a probability distribution on
R". Now, define a map V : T(M) — St(p,n) x SPD(n)
as A — (Q,P) where P = RTR, QR = A is the qr-
decomposition of A [12]. Here, St(p,n) x SPD(n) is the
product manifold of St(p,n) and SPD(n) with product metric
defined as: d((Q1, P1), (Q2, P2)) = d(Q1,Q2) + d(P1, P»),
here Q1,Q2 € St(p,n), P, P, € SPD(n).

Proposition 2.2.
(a) Vis a well-defined map.
(b) W is a bijection.

The proposition can be proved using the uniqueness of
qr-decomposition for full column rank matrices and unique-
ness of Cholesky factorization of symmetric positive definite
(SPD) matrices respectively. Now, as we can identify T(M)
with the product manifold of St(p,n) and SPD(n) using V.
W can then define the Gaussian and the Laplace distributions
on T (M) using Egs. (1, 2) with respect to the product mea-
sure. Moreover, given a set of [V i.i.d. samples drawn from
a Gaussian (Laplace) distribution, we can define the FM and
FMe using the product metric as defined above. We can also
define the FM and FMe estimators as given by Eq. (3), for
this product manifold.

3. EXPERIMENTAL RESULTS

In this section, we use OASIS data [1] to address the clas-
sification of demented (D) vs. non-demented (ND) patients
using our proposed framework. This dataset contains at least
two MR brain scans of 150 subjects, aged between 60 to 96
years old. For each patient, scans are separated by at least
one year. The dataset contains patients of both sexes. In or-
der to avoid gender effects, we have taken MR scans of male
patients alone from three visits, which resulted in the dataset
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containing 69 MR scans of 11 subjects with dementia and 12
subjects without dementia. We first compute an atlas (using
the method in [13]) from the 36(= 12 x 3) MR scans of pa-
tients without dementia.

ND D ND D
ND 0N 2 | [ 3
D[ 1 ON [2 [N

(a) using FM (b) using eFM

After rigidly reg-
istering each MR
scans to the atlas,
we compute the dis-
placement field of
Table 1: Confusion matrix (without out- eac.h MR Scafl 're-
liers) quired to non-rigidly
register them to the atlas. So, from each patient, we get three
displacement fields (collected from three visits) to get a path
on the space of diffeomorphisms. As the geometry of this
space is complicated, we quotient out the volume preserving
diffeomorphisms to map each displacement field on to a hy-
persphere of dimension 892 (as was done in [14]). Now, for
each patient, we have a trajectory on the hypersphere S392,
We then compute the mean trajectory for each of the two
classes and classify each data (trajectory) to the nearest mean
trajectory (analogous to nearest neighbor classification tech-
nique) in a leave-one-out fashion. We compare our proposed
FM and FMe with extrinsic FM (eFM) and extrinsic FMe
(eFMe) [15] respectively. The confusion matrix [16] is given
in Table (1). Using FM (eFM), the sensitivity, specificity
and classification accuracy are 0.83 (0.67), 0.91 (0.82) and
86.96% (73.91%) respectively. In Figure (2), the segmented
corpus callosa for three visits of two subjects from the two
classes (demented and non-demented) are shown.

M S )

Nondemented

Demented

Fig. 2: Change in corpus callosa shapes in two classes

ND D ND D ND D
ND | 3 | 2 |
D [ 1[N0 |

(a) using FM (c) using FMe

(b) using eFMe

Table 2: Confusion matrix (10% outliers)

This OASIS data also has some samples from the “con-
verted” group, i.e., converted/’cured” (after treatment) from
non-demented to demented during the study. We have used
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ND D
ND 3

D | 4 70 6 |5 > N

(a) using FM (b) using eFMe (c) using FMe

Table 3: Confusion matrix (20% outliers)

this “converted” group as an outlier in our original two class
data. In the “converted” group, there are 7 patients having at
least three visits. We have added 10% and 20% outliers to the
data, i.e., added 2 and 4 samples from the converted group
to the original data. We now do the leave-one-out classifica-
tion on the outlier corrupted data using both FM and FMe.
The comparison results are shown in Table (2) (10% outlier)
and (3) (20% outlier). The sensitivity, specificity, accuracy
for FM with 10% outliers are 0.75, 0.91, and 82.61% respec-
tively. Whereas, when using eFMe (FMe) we get these values
to be 0.67 (0.83), 0.82 (0.91) and 73.91% (86.96%) respec-
tively. Note that, on data with 10% outliers, FMe performs
as good as FM (without outliers). Thus confirming the ro-
bustness of FMe. On data corrupted with 20% outliers, using
FM (FMe), the sensitivity, specificity and accuracy values are
0.83 (0.83), 0.64 (0.82), 73.91% (82.61%). Whereas, using
eFMe the respective values are 0.75, 0.45 and 60.86% respec-
tively. The comparative performance analysis of FM, FMe
and eFMe clearly indicate the superior performance of FMe
over both FM and eFMe for data with outliers.

4. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we presented a novel framework to compute
statistics on the space of trajectories, which was given a Rie-
mannian product manifold structure. Further, we defined the
Gaussian and the Laplace distributions on this space. This
was achieved by defining these distributions on a Rieman-
nian homogeneous space. Then, we sampled from these dis-
tributions and claimed that the maximum likelihood estima-
tor (MLE) of the location parameter of the Gaussian and the
Laplace distributions respectively are the Fréchet mean (FM)
and Fréchet median (FMe). Further, efficient recursive esti-
mators for computing the FM and the FMe on the space of
trajectories were presented. The usefulness of our estimators
was shown by applying them in conjunction with a nearest-
neighbor classifier to the classification of demented vs. non-
demented patient scans acquired from the OASIS database
[1]. The classification results have shown improved perfor-
mance of FMe over FM on outlier corrupted data. Our future
work will focus on the computation of the variance and prin-
cipal geodesic analysis (PGA) on this space of trajectories.
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