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ABSTRACT
Convolutional neural networks are ubiquitous in Machine
Learning applications for solving a variety of problems. They
however can not be used in their native form when the domain
of the data is commonly encountered manifolds such as the
sphere, the special orthogonal group, the Grassmannian, the
manifold of symmetric positive definite matrices and others.
Most recently, generalization of CNNs to Riemannian homo-
geneous spaces have been reported in literature. In this work,
we propose an end-to-end CNN architecture for classification
of diffusion MRI (dMRI) signals, dubbed dMR-CNN. In each
voxel of the dMRI scan, the signal is acquired as a real num-
ber along each diffusion sensitizing magnetic field direction
over a hemi- sphere of directions in 3D. Hence, in each voxel,
we have a function f : S2 ×P1 → R. We formulate a defini-
tion of correlation on this space to extract intra-voxel features
and then use standard CNN model to capture the spatial in-
teractions between the intra-voxel features. Our proposed
framework comprises of architectures to extract these intra-
and inter- voxel features. We present an experimental setup to
classify dMRI scans acquired from a cohort of 44 Parkinson
Disease patients and 50 control/normal subjects.

Index Terms— dMR-CNN, Equivariance

1. INTRODUCTION

CNNs introduced in [1] have gained enormous attention in
the past decade especially after the demonstration of the sig-
nificant success on Imagenet data by [2] and others. The key
property of equivariance to translation of patterns in the image
is utilized in the CNN to share learned weights across a layer
in the network. Thus, one might consider exploiting equiv-
ariance to transformation groups as a key design principle
in designing neural network architectures suitable for these
groups. For data sets that are samples of functions defined
on Riemannian manifolds, it would then be natural to seek
a symmetry group action that the manifold naturally admits
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and define the correlation operation (on the manifold) that
would be equivariant to this symmetry group action. Several
researchers [3, 4] proposed convolutional/correlational mod-
els which are equivariant to the action of the symmetry group
admitted by the sphere in 3D. Recently in [5, 6], the authors
proposed a definition of correlation on a Riemannian homo-
geneous space [7] which is symmetry group equivariant.

In this work, we present a novel architecture for im-
plementing the CNN suited for Riemannian homogeneous
spaces (called HCNN for homogeneous CNN) of which the
domain of the dMRI data is an example. Our overall network
called dMR-CNN is a combination of HCNN that captures
intra-voxel features and a standard CNN that captures inter-
voxel interactions of these intra-voxel features. We include
experiments depicting, to the best of our knowledge, for the
first time an end-to-end implementation for classification of
diffusion MRI (dMRI) brain scans of Parkinson Disease (PD)
patients and control subjects. Our formulation involves defin-
ing correlation operation on the Riemannian homogeneous
space S2 × P1 (where P1 is the space of positive reals). The
experiment involves classification of dMRI scans acquired
from a cohort of 44 PD patients and 50 Controls. We present
an end-to-end classification of dMRI brain scans. dMRI is
a non-invasive magnetic resonance imaging technique that
allows for inference of neuronal connectivity between vari-
ous neuroanatomical structures using a diffusion sensitized
MR signal [8]. Typically, diffusion sensitizing magnetic field
gradients are applied along a large number of directions and
the response MR signal is collected at each voxel along these
directions. For each direction, the data contains an entire
MR volume image. Let S(q), denote the scalar valued signal
at a voxel in the 3D image along a radial vector q in the
Fourier (frequency) space. Since q is a radial vector with a
magnitude and a direction, the natural mathematical space
for representing this signal S(q) is then by functions on the
product space, S2 × P1. This product space is a Riemannian
homogeneous space. Using the spherical harmonic basis on
S2 – which form a basis for all L2 functions on the sphere –
along with Laguerre polynomials for representing the radial
part, we present a symmetry group equivariant correlation
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for such functions. The product is known as the SHORE
basis in dMRI literature [9, 10]. In the following sections,
we will present the theory and implementation along with
experiments for this setting.

2. CORRELATION ON RIEMANNIAN
HOMOGENEOUS SPACES

In this section, we first briefly give an overview on the dif-
ferential geometry of the Riemannian homogeneous space
S2 × P1 which is required to define the correlation opera-
tion, where P1 is the space of positive reals. For a detailed
exposition on the geometry of the Riemannian homogeneous
spaces, we refer the reader to a comprehensive and excellent
treatise by Helgason [7].

Preliminaries. Let (M, gM) be a Riemannian manifold
with a Riemannian metric gM, i.e., (∀x ∈M) gMx : TxM×
TxM → R is a bi-linear symmetric positive definite map,
where TxM is the tangent space of M at x ∈ M. Let
d : M×M → R be the metric (distance) induced by the
Riemannian metric gM. Let I(M) be the set of all isome-
tries of M, i.e., given g ∈ I(M), d(g.x, g.y) = d(x, y),
for all x, y ∈M. It is clear that I(M) forms a group (hence-
forth, we will denote I(M) by G) and thus, for a given g ∈ G
and x ∈ M, g.x 7→ y, for some y ∈ M is a group action.
Since we choose the left group action, we will denote it by
Lg , i.e., Lg(x) = g.x. Note that Lg :M → M is a diffeo-
morphism. Consider o ∈ M, and let H = Stab(o) = {h ∈
G|h.o = o}, i.e., H is the Stabilizer [11] of o ∈ M. We
say that G acts transitively onM, iff, given x, y ∈ M, there
exists a g ∈ M such that y = g.x. For M = S2 × P1,
G = SO(3) × {R \ {0}} and H = SO(2) × {±1}. For
the notational simplicity, throughout the rest of the paper, we
will use M to denote S2 × P1 and G and H to denote the
respective group and the stabilizer.

In fact, one can identify M as a Riemannian homoge-
neous space [7] and hence, the following identities are true.
1. d(x, z) = d(g.z, g.z) 2.

∫
M f(y)ω(x) =

∫
M f(x)ω(x) ,

where, f :M→ R is any integrable function with respect to
the volume density ω corresponding to the Riemannian met-
ric gM, x, y, z ∈ M and g ∈ G. Now, we will present some
definitions needed to define the correlation operator.

Definition 2.1 (Pullback of a function f using the diffeo-
morphism Lg−1 ). Let f : M → R be a function on M.
We can define the pullback of f by the diffeomorphism Lg−1

denoted by
(
Lg−1

)∗
f :M→ R as y 7→ f

(
Lg−1(y)

)
.

For the rest of the paper we will assume a function f :
M→ R to be square integrable, i.e., |f(x)|2ωM(x) <∞, if
not mentioned otherwise.

Now, we will define correlation of two functions on the
Riemannian homogeneous spaceM.

Definition 2.2 (Correlation). Using the above notations, the
correlation between f and w is given by, (f ? w) : G → R
defined as follows:

(f ? w) (g) :=

∫
M

f(x)
(
L∗g−1w

)
(x)ωM(x) (1)

Let S = {f :M→ R} and U = {(f ? w) : G→ R|
f ∈ S}. Then, the following proposition holds with the proof
presented in [6].

Proposition 2.1. Let F : S → U be a function given by
f 7→ (f ? w). Then, F is G-equivariant [6].

We now propose an convolutional architecture to classify
the dMRI data.

2.1. Network architecture

In each voxel of the dMRI scan, the signal is acquired as a
real number along each magnetic field direction over a hemi-
sphere of directions in 3D. Hence, in each voxel, we have a
function f : S2 × R+ → R. As described earlier, we will
use the well known SHORE basis [9] to represent each func-
tion. Our proposed network architecture has two components,
to extract intra-voxel features and inter-voxel features respec-
tively. Below, we will describe both of these layers separately.
A figure depicting the network architecture for dMRI classi-
fication is included in Fig. 1.

M-Corr layer

f : M ! R

w1

1
: M ! R

R
f (x)

(

L∗

·
�1 w1

1

)

(x) G ! R

 

f ? w1
1

!

S
ta
n
d
ar
d
C
N
N
w
it
h
S
o
ft
m
ax

ff G ! R

wk
1

G ! R

G ! Ref ? wk
1

(

f ? w1

1

)

R
eL
U
la
ye
r

M = S
2
× P1

G = SO(3)× fR n f0gg

f

!
R

(

ff ? wk
1

)

(

ff ? wk
n

)

(

f ? w1

1

)

R
eL
U
la
ye
r

(

ff ? wk
1

)

(

ff ? wk
n

)

G-Corr layer
G-Corr layer

Architecture for Intra-voxel features

Architecture for
Inter-voxel features

Shared Weights

Fig. 1: Schematic diagram of dMR-CNN

2.1.1. Extracting intra-voxel features

In order to extract intra-voxel features, we will treat each
voxel independently. As mentioned before, in each voxel we
have a function f : S2 × R+ → R. Since S2 × R+ is a
Riemannian homogeneous space (endowed with the product
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metric), we will use a sequence of correlation layers (with
non-linearity within) to extract features which are equivari-
ant to the action of SO(3) × (R \ {0}). The architecture to
extract this intra-voxel features consists of three layers de-
scribed below. For simplicity of notations, we will use N to
denote S2 ×R+ and G to denote SO(3)× (R \ {0}).

Correlation on M (M-Corr): Let f ∈ L2 (M,R) be
the input function and w ∈ L2 (M,R) be the mask. Then,
using definition 2.2,M-Corr is defined as (f ? w) : G→ R.

Correlation on G (G-Corr): Let f̃ ∈ L2 (G,R) be the
input function and w ∈ L2 (G,R) be the mask. Then analo-
gous toM-Corr, we can define G-Corr as

(
f̃ ? w

)
: G→ R

using definition 2.2 (as G naturally acts on G).

In order to use nonlinearity between two layers, we will
add a ReLU unit. As the outputs of bothM-Corr and G-Corr
are functions from G to R, we will use the standard ReLU
operation on R.

We will use a cascade of these layers to extract the fea-
tures – from each voxel independently – that are equivariant
to the action of G. Observe that this equivariance property is
natural in the context of dMRI data. Since in each voxel of the
dMRI data, the signal is accquired in different directions (in
3D), we want the features to be equivariant to the 3D rotations
and scaling (given by G = SO(3) × {R \ {0}}). Thus, our
formulation extracts features which are natural to the dMRI
data.

2.1.2. Extracting inter-voxel features

After the extraction of the intra-voxel features (which are
equivariant to the action of G), we want to derive features
based on the interactions between the neighboring voxels.
We will use a cascade of standard convolutional and ReLU
layers to capture the interaction between the equivariant
intra-voxel features. This process yields features capturing
the interactions between intra-voxel features over a spatial
neighborhood. One can of course treat the intra-voxel fea-
tures as a bag of features and use a fully connected layer.
But, we will show using permutation testing in Section 3 that
capturing interaction between features across voxels gives
statistically significant results, while without this layer the
result is not statistically significant. We provide the details
about this statistical testing in the experimental section. We
will call this network architecture dMR-CNN.

3. EXPERIMENTS

In this section, we present a real data experiment that involves
classification of dMRI brain scans acquired from a cohort of
Parkinson Disease (PD) patients and control subjects.

Fig. 2: A sample S(0) image with
overlayed ROIs

For the dMRI data,
we used the raw sig-
nal, S(q) at each voxel
as our input data. The
data pool consists of
dMRI (human) brain
scans acquired from
50 PD patients and 44
controls. All images
were collected using
a 3.0 T MR scanner
(Philips Achieva) and
32-channel quadrature volume head coil. The parameters of
the diffusion imaging acquisition sequence were as follows:
gradient directions = 64, b-values = 0/1000 s/mm2, repetition
time =7748 ms, echo time = 86 ms, flip angle = 90◦, field
of view = 224 × 224 mm, matrix size = 112 × 112, number
of contiguous axial slices = 60, slice thickness = 2 mm, and
SENSE factor P = 2.

From each subject, the left/right anterior and posterior
substantia nigra (aSN and pSN respectively) were manually
segmented by an expert. We restrict our attention to these
4 regions-of-interest (ROIs) for the classification task as they
are known to be affected most by PD. Eddy current correction
was applied to each data set by using standard motion correc-
tion techniques. Fig. 2 depicts an example of S0 (zero mag-
netic gradient) image in the MNI standard coordinate space
overlayed with two of the ROIs.

Below, we provide the details of our classification exper-
iment. We selected 85 subjects at random to train on and the
remaining 9 were used for testing.

Classification of dMRI data: For each ROI, we extracted
the intra-voxel features using the HCNN with weights shared
across voxels in the same ROI. The network architecture to
extract intra-voxel features is as follows M-Corr → ReLU
→ G-Corr→ ReLU→ G-Corr with the number of channels
being 5, 10 and 15 respectively. Furthermore, we use batch-
normalization after each convolution layer. Then, for each
ROI, we extracted inter-voxel features using two 2×2 convo-
lution layers with number of channels 20 and 25 respectively.
We used 2 × 2 standard batch-normalization, max-pool and
ReLU in between.

After, extracting inter voxel features, we combined fea-
tures from 4 ROIs using a log-softmax fully connected layer
with negative log-likelihood loss at the end. We used the
stochastic gradient decent (SGD) as the optimizer with an
initial step size of 0.1 and a step decay learning rate update.
The total number of parameters for this network is 32482.
We trained this model for 94 epochs and obtained 95.24%
training and 88.88% testing accuracy. The total training time
is 9328.8 seconds. The above testing accuracy implies mis-
classification of one test sample.
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Permutation testing for statistical significance of inter-
voxel features: Now, we present a Hotelling T 2 statistic and
use this test to assess the statistical significance of group dif-
ferences. In order to achieve this, we perform a permutation
test. Since it is difficult to formulate a parametric permuta-
tion test for this data, we use a non-parametric permutation
test instead. The steps involved in performing the permutation
test are as follows: (i) compute the t2 statistic. (2) randomly
permute the data between PD and control groups, and then
compute t2i . (3) Repeat step (2) 50, 000 times and report the
p-value as the fraction of times t2i > t2. The resultant p-value
can be interpreted as the probability of finding a larger group
difference by randomly permuting the data. We will reject the
null hypothesis that there is no difference between the group
means with 5% significance. The p-values for both dMR sig-
nal and EAP-based representations for inter- and intra-voxel
features are reported in Table 1. We computed the p-values
for each ROI independently.

Intra/ ROIMode Inter aSN (L) aSN (R) pSN (L) pSN (R)
dMR Intra 0.39 0.52 0.45 0.97
dMR Inter 0.00 0.00 0.00 0.00

Table 1: p-values for permutation testing.

In the above table, aSN/pSN (L/R) represent the left/right
anterior/posterior substantia nigra respectively. By examining
the p-values in Table 1, we can see that intra-voxel features
are not statistically significant in finding the group difference,
while after examining the interaction between equivariant fea-
tures, we can reject the null hypothesis. This justifies the need
for inter-voxel feature layer. Furthermore, we used a fully
connected layer after extracting intra-voxel features and ob-
tained around 50% classification accuracy (i.e., uniform class
probabilities). This in conjunction with the hypothesis testing
described above indicates the usefulness of inter-voxel fea-
tures. But, one may wonder about the usefulness of intra-
voxel features, hence we applied a 3D CNN to the dMR sig-
nal and obtained a classification accuracy of 66.67%. This
clearly justifies the need and importance of both inter- and
intra-voxel layers. Furthermore, the results in Table 1 indi-
cate that, using the dMR raw signal representation, features
extracted from all the 4 ROIs are statistically significant.

4. CONCLUSIONS

In this paper, we presented a novel deep network architec-
ture called dMR-CNN, which is a cascade of two types of
architectures, (i) a novel generalization of the CNN to cope
with data whose domain is a Riemannian homogeneous space
abbreviated HCNN. This architecture extracts the intra-voxel
features. (ii) a standard CNN, which captures the inter-voxel
neighborhood interactions between the intra-voxel features.
We presented the an end-to-end deep network architecture
for classification of dMRI brain scans acquired from a cohort

of 44 Parkinson Disease patients and 50 controls. Statistical
group testing results were presented depicting the significance
of the classification results. Our future work will focus on
testing on dMRI brains scans from a larger populations of PD
patients and control subjects.
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