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Abstract

Regression in its most common form where independent and dependent variables are in ℝn is a 

ubiquitous tool in Sciences and Engineering. Recent advances in Medical Imaging has lead to a 

wide spread availability of manifold-valued data leading to problems where the independent 

variables are manifold-valued and dependent are real-valued or vice-versa. The most common 

method of regression on a manifold is the geodesic regression, which is the counterpart of linear 

regression in Euclidean space. Often, the relation between the variables is highly complex, and 

existing most commonly used geodesic regression can prove to be inaccurate. Thus, it is necessary 

to resort to a non-linear model for regression. In this work we present a novel Kernel based non-

linear regression method when the mapping to be estimated is either from M → ℝn or ℝn → M, 

where M is a Riemannian manifold. A key advantage of this approach is that there is no 

requirement for the manifold-valued data to necessarily inherit an ordering from the data in ℝn. 

We present several synthetic and real data experiments along with comparisons to the state-of-the-

art geodesic regression method in literature and thus validating the effectiveness of the proposed 

algorithm.

1 Introduction

Regression is an essential tool for quantitative analysis to find the relation between 

independent and dependent variables. Here, we are given a training set of both of these 

variables and we seek a relation between them. When, both of these variables are in 

Euclidean space, and there is a linear relation between them, i.e., yi = axi + b for a set of {xi, 

yi}, a common way to solve for the unknowns a and b is using linear least-square estimator, 

i.e., minimizing the sum of square distances between the two sets of variables over the 

training set. But, in many real applications, the relation is seldom linear, hence a non-linear 

least squares estimator or any other sophisticated regression tool like Support Vector 

Regression [4] can be used.
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Often, either of the independent or dependent variables are manifold-valued and lie on a 

smooth Riemannian manifold. In such instances, embedding the manifold valued variables 

in Euclidean space (using the Whitney Embedding [1]) might result in a poor estimation of 

the underlying model. Also, as any general manifold globally lacks the vector space 

structure, any linear combination of points on the manifold may not lie on the manifold. For 

example, suppose the data points lie in a Kendall’s shape space [14], then an arbitrary linear 

combination of the shapes will not yield a point on in the shape space. These problems 

motivate the development of novel regression methods for manifold-valued data. We will 

now briefly present earlier work that addresses this problem.

Related Work—Curve fitting on Riemannian manifolds where some notion of ordering is 

imposed on the manifold-valued data has been quite common lately in literature [2, 18, 7, 

13, 5, 16]. We will present a brief review within the limited space. Samir et al. [18] 

developed a gradient descent algorithm for time ordered manifold-valued data using a 

variational formulation, where the cost function entails a data fidelity and a regularization 

constraint on the curve being sought. This formulation itself is quite common to finding 

smooth approximation of both real-valued and manifold-valued data. What is then different 

between methods is the kind of metric used and at times even the data fidelity terms. Each 

could facilitate the solution sought from an efficiency and/or accuracy.

In the recent past, several researchers [7, 13] have proposed geodesic regression on 

manifolds, as well as non-parametric regression models [2]. The geodesic regression models 

correspond to linear regression in ℝn. Most recently however, a variational spline regression 

for the manifold of diffeomorphisms was presented in a large deformation diffeomorphic 

mapping (LDDMM) setting [19]. Fletcher [7] proposed geodesic regression to regress 

manifold-valued data against the real-valued variables. Taking cues from [7], authors in [5], 

developed a regression technique for points that lie on unit Hilbert sphere. In [2], authors 

estimate the correlation between shape and age using manifold regression. The 

aforementioned methods dealt mostly with the independent scalar variable. A multivariate 

general linear model was proposed in [16] where given a dataset, authors try to model a 

functional relation from a ℝn to a manifold ℳ. In [15], they extend Canonical Correlation 

Analysis (CCA) on Riemannian manifold, where both of the variables are manifold-valued. 

Hong et al. [12] proposed a shooting spline formulation to regress points on Grassmann 

manifold with reals. In [9], Hinkle et al. has proposed a polynomial regression method 

formulated as a variational minimization problem on the manifold using covariant 

derivatives. The minimization tends to covariant differential equations.

In this paper, we present a nonlinear kernel regression technique to handle both of the 

following commonly encountered cases, ℝn → ℳ and ℳ → ℝn. We dub our proposed 

kernel based regression from ℝn → ℳ as Manifold-valued Kernel Regression (MVKR). A 

key advantage of this approach is that there is no requirement for the manifold-valued data 

to necessarily inherit an ordering from the multi-variate data in ℝn, a necessary requirement 

in most existing methods. An example in Fig. 1 depicts the usefullness in terms of accuracy 

in using the nonlinear regression over the geodesic regression model.
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2 Methodology

Regression is ubiquitous in scientific analysis where given a set of tuples 

, the goal is to find a functional relation between  and . 

Here, one variable is the observed data (independent variable) and the other one is the 

response (dependent variable). We propose a kernel interpolation to find the relation 

between observed data and responses where one of them lies in the Euclidean space and the 

other one lies on a Riemannian manifold. Given  and , we pose 

the two cases as following interpolation problems:

• Manifold valued independent variable: Find a function f : ℳ → ℝn such that xi 

= f(yi), ∀i.

• Manifold valued dependent variable: Find a function h : ℝn → ℳ such that yi = 

h(xi), ∀i.

In both the above cases, ℳ is a Riemannian manifold equipped with a Riemannian metric g. 

We will address these above two problems separately in the following subsections.

2.1 Manifold valued independent variable

Given  as before, we try to model the function f̂ : ℳ → ℝn by minimizing the 

following error function:  where, . Here 

 and  are the representatives on ℳ and ℝn respectively.  : ℳ × 

ℳ → ℝ is the kernel function. Thus, x̂, the approximation of x is the weighted mean of tj’s. 

The weights here are computed by using a suitable kernel function and representatives, 

, on the manifold, ℳ. We learn the  by minimizing the above error function, 

E, whereas,  are taken to be the cluster representatives. Here, we used the steepest 

descent technique to estimate . The gradient of the objective function with respect to 

tj is given by, .

Note that, as the objective function, E is convex in tj, the global minimum can be achieved 

using a steepest descent technique. In a similar fashion, we can initialize cj to be the cluster 

representatives and estimate them along the gradient direction. The gradient of the objective 

function with respect to cj is given by, .

Since any kernel function depends on the underlying metric, if the underlying manifold ℳ 

has a closed form expression for the geodesic distance, so will ∇cj (cj, yi). In this work, we 

use the kernel , where b, σ2 are the kernel parameters, and 

d(., .) is the geodesic distance on ℳ. Then,  where, 

Logcjyi is the Riemannian inverse exponential map. Note that, the b value is tuned according 

to the structure of the dataset. By drawing an analogy with the Gaussian kernel on ℝn, we 
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chose a small b value for a well clustered data, and a high b value otherwise. The parameter 

σ2 is taken as the variance over the training data.

2.2 Manifold valued dependent variable

Given  as above, we now try to model the function ĥ : ℝn → ℳ such that yi ≈ 

ĥ(xi). As before, let ℳ be equipped with a Riemannian metric g. Also, let d : ℳ × ℳ → ℝ 

be the geodesic distance on ℳ defined as follows: d(yi, yj)2 = gyi (Logyiyj, Logyiyj), where 

Logyiyj is the inverse-exponential map. We can now estimate h by minimizing the following 

error function:  where,

(1)

Analogous to the manifold valued independent variable case, here cj ∈ ℳ and tj ∈ ℝn, ∀j. 

Euc : ℝn × ℝn → ℝ is the kernel function on the Euclidean space. Thus, yi is estimated as 

the weighted Fréchet mean (FM) [8] of the representatives, , where weights are given 

by the kernel function, yielding the MVKR. We use  as the cluster representatives 

and estimate  using the steepest descent on the objective function. The gradient 

direction of E with respect to cj is given by,

(2)

As cj and ŷi both are on ℳ, we will use charts to compute ∇cjŷi. Let ℳ be an m 
dimensional manifold. Consider two charts (U, Φ) and (V, Ψ) containing cj and ŷi, 

respectively. By fixing xi, we can take ŷi as a function of cj ‘s. Let the function be F. Then, 

∇cj ŷi can be defined as ∇cj ŷi := ∇c̃jG, where c̃j = Φ(cj) and G = Ψ ∘ F ∘ Φ−1 : ℝm → ℝm. 

Hence, ∇c̃jG is the Jacobian of G. Note that, ∇cjE ∈ Tcjℳ, so in order to make the RHS of 

equation 2 to be in Tcjℳ, we use parallel transport of Logŷiyi from ŷi to cj. For a general 

Riemannian manifold ℳ, we can approximate this parallel transport, ΛcjLogŷiyi as 

ΛcjLogŷiyi ≈ Logcj yi − Logcjŷi.

Since there is no closed form solution for the weighted FM of more than two samples on 

general Riemannian manifolds, computation of ∇ĉjG, or the Jacobian of G, is not 

straightforward. Hence, in spirit of [16, 11], we approximate Equation 1 as 

, where p ∈ ℳ is any arbitrary point on M, and Exp is 

the Riemannian Exponential map. In the absence of such an approximation, the problem 

would become analytically intractable as estimating both the control points and the FM 

jointly is nontrivial. With this simplification, ∇cjŷi = Euc(tj, xi) × Im, where Im is the 

identity matrix of size m. For the case of P(n), we resort to use of the efficient recursive FM 

estimator in [10] and a similar one for and Sn.
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3 Experimental Results

We now evaluate the performance of the proposed regression method on both synthetic and 

real datasets. In the following two subsections, we will experimentally show effectiveness of 

our method to (1) regress real vector-valued dependent variables against manifold-valued 

independent variables and (2) regress manifold-valued dependent variables against real 

vector-valued independent variables. In order to quantify the performance of our ℝn to 

manifold regression, we use the R2 statistical measure and the p–value. The R2 statistical 

measure on a manifold is defined in [7] and repeated here for convenience. Let  be 

the manifold-valued data with its corresponding predicted value to be . Let the 

unexplained variance be defined as . Then, the R2 statistic is defined as: 

. The value of R2 statistic lies in the interval [0, 1], and a value close 

to one in general denotes better regression performance. We use a t–test over 30 independent 

runs to reject the null hypothesis, H0: mean of the unexplained variance is not less than the 
mean of the data variance with a significance level of 0.001. For the manifold to ℝn 

regression, we present an application to the classification on Parkinson’s dataset and report 

the average classification accuracy over 30 runs.

3.1 Manifold valued independent variable

In this section, we present results of our regression scheme applied to classification of MR 

T2 brain scans obtained from, (1) controls (CON), and patients with (2) essential tremor 

(ET), and (3) Parkinson’s disease (PD). We aim to automatically discriminate between these 

three classes, using features derived from the data.

In [20], authors have used DTI based analysis, specifically the scalar-valued features to 

address the problem of movement disorder classification. In this section, we use the shape of 

the Substatia Nigra across the input population as our key discriminatory feature. Sample 

Substantia Nigra shapes for the three classes are shown in Fig. 2. The shapes of interest are 

first segmented and then are converted into a probability density function. Then using the 

square root density parameterization, this shape can be represented as a point on the unit 

Hilbert sphere using the Schrodinger Distance Transform (SDT) [3].

The key feature used in our classification of the aforementioned disease classes is the shape 

of the Substantia Nigra. The Substantia Nigra was hand-segmented from all rigidly pre-

aligned datasets, consisting of 25 controls, 15 ET and 24 PD images. The T2 brain scans 

were acquired using a 3T Phillips MR scanner with the following parameters: TR = 774 ms, 

TE = 86 ms and voxel size = 2 × 2 × 2 mm3.

We first collected random (point) samples on the boundary of each 3-D Substantia Nigra 

shape, and applied the SDT to represent each shape as a point on the unit hypersphere. The 

size of the ROI for the 3-D shape of interest was set to (28 × 28 × 15)mm3, resulting in a 

11760-dimensional unit vectors using SDT. Therefore, the samples now live on the 11759 

manifold.
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We randomly selected 10 Control, 10 PD and 5 ET images as the test set, and used the rest 

of the data for training. The details of our classification method are described next. First, we 

regress the dependent variable against the independent variable on 11759. In order to make 

the dependent variable lie in [0, 1], we apply the logistic function ℒ on the dependent 

variable f(y). Then, we classify a point y as belonging to class-1, if ℒ(f(y)) < 0.5, else we 

assign it to class-2. The classification task is repeated 30 times using various randomly 

chosen training sets and the average accuracy is reported. The results are shown in Table 1. 

We compare our method with the standard PCA and PGA (Principal Geodesic Analysis) [6], 

and report the accuracy of classification.

The results show that our proposed method performs well compared to the other two in 

classifying Control versus PD and ET. In case of PD vs. ET classification, our method gives 

slightly lower accuracy compared to PGA.

3.2 Manifold valued dependent variable

In this section, we applied our MVKR method on synthetic and real datasets. In all of these 

experiments, we have made a comparison with the recently proposed MGLM method in [16] 

and MKRE (Manifold kernel regression estimator) in [2]. As MVKR and MKRE both use 

the same Nadaraya-Watson kernel, we have used the same choice of parameters for both of 

these methods.

Synthetic Data Experiment—For this experiment, we synthesized a dataset 

 by defining a function h : xi =[θi, ϕi] → yi as follows: h([θi, ϕi]) := 

(cos(θi) cos(ϕi), cos(θi) sin(ϕi), sin(θi)) where θi ∈ [0, π/2), ϕi ∈ [0, 2π], ∀i. Thus, all the yis 

are on the northern hemisphere of the 2–sphere, so FM is uniquely defined. We have 

partitioned this dataset into 90%, 10% for training and testing respectively. The p–value and 

average R2 statistics are reported in Table 2 over 30 runs. From these figures, we can clearly 

see that our MVKR method performs better in comparison to MGLM [16] and gives 

comprative performance to MKRE [2].

OASIS dataset [17]—We used the publicly available OASIS data [17] to regress 

manifold-valued data with reals. This dataset consists of T1 MR brain scans of subjects with 

ages from 18 to 96 including individuals with early stage Alzheimer’s Disease.

We randomly chose 4 brain scans from each of the decades in the 18 – 96 age group, 

totalling 36 brain images, out of which 32 were randomly chosen and used as training and 

the rest were used as the test set. Corpus callosum (CC) shapes of individuals of varying 

ages are shown in Fig. 3. We seek to model the relationship between age and shape of the 

CC, captured using three different features as described in the following. From each of the 

brain images of the 36 individuals, we construct three different data representations as 

follows. (1) We segmented out the CC from the brain images. Then, we take the boundary of 

the CC and map it to S24575 using the SDT [3]. (2) After segmenting out the CC, we used a 

set of landmark points on the boundary and map each of these point sets into the Kendall’s 

shape space [14], which is a complex projective space. (3) We took the whole brain image 
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and computed the normalized histogram and used the square root of the normalized 

histogram to map each image on to S255.

The average R2 statistics of 30 runs on each of these three representations of the chosen 

OASIS datasets is given in Table 3. From the table, it is evident that the performance of 

MVKR is significantly better compared to the MGLM method. It should be noted that the 

R2 statistics reported by MVKR is not very high (not close to 1). But it can be argued that, 

as we are only considering relation between age and the manifold-valued data, the relation is 

highly nonlinear.

Hence, it is not possible to truly capture the “relation in full” based on age alone, of an 

individual. Also, the brain images are chosen randomly without considering gender, 

educational background or even symptoms of AD, all of which makes the relation between 

age and the shape of the CC very complex. So, given these confounding parameters that 

could influence the structure, the R2 statistics for MVKR depicts a significantly good 

performance. Note that, for second and third variant of this dataset, MGLM results in a 

negative R2 statistic. From the definition of R2 statistics, we can see that a negative value 

indicates that the regressor performed worse than the most trivial choice, which is FM of the 

dataset for any given test point x (value of the independent variable).

Thus, MGLM’s unsatisfactory performance on these datasets indicates that a linear regressor 

is inept for this problem and motivates the use of a nonlinear regression technique such as 

the one presented here. The p–values reported in Table 3 indicate the higher statistical 

significance and hence the superior performance of our MVKR method. In comparison to 

MKRE, the performance of MVKR is consistently better, though not by a significant 

amount.

So, in summary, as for most of the real cases, the data on the manifold do not lie close to a 

geodesic, the performance of MGLM is not comparable to MVKR. This is due to the fact 

that MGLM assumes that data lie close to a geodesic while MVKR does not require any 

such assumption. When the data lie or are close to a geodesic, MVKR and MGLM have 

comparable performance as can be seen from the following toy example. In this example, we 

have used the sythetic data on P(3), the space of symmetric positive definite matrices, in 

[16]. The R2 statistics value for MGLM and MVKR are 0.98 and 0.99 respectively. We 

would also like to point out that although compared to MKRE, performance of MVKR is not 

significantly better, MVKR is applicable for ℝn to M regression and vice versa, whereas, the 

method in [2] is applicable only to regression for the case of ℝ to M.

4 Conclusions

In this paper, we presented a novel nonlinear regression technique for estimating the 

functional relationship between manifold-valued independent variables and ℝn valued 

dependent variables and vice versa. Earlier work in this area involved use of geodesic 

regression and is ill suited for many situations involving complex relationships between the 

aforementioned independent and dependent variables. Our method involved a Kernel-based 

technique and we presented several experiments to demonstrate the performance of our 

Banerjee et al. Page 7

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



methods in comparison to the state-of-the-art (MGLM method) on a variety of data sets. 

Results depict that our method yields superior performance for both the applications namely, 

classification of movement disorders and finding a correlation between age and CC shape of 

patients from the OASIS database.
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Fig. 1. 
Examples of nonlinear & geodesic regression.

Banerjee et al. Page 9

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Examples of Substantia Nigra.
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Fig. 3. 
Corpus callosum shapes
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Table 2

Synthetic data results

MVKR MGLM MKRE

Train Error 0.00 0.60 0.07

Test Error 0.00 0.61 0.07

R2 Stat. 1.00 0.29 0.92

p–value < 0.001 < 0.001 < 0.001
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